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Critical branching-annihilating random walk of two species

Géza Ódor
Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49, Hungary

~Received 19 September 2000; published 26 January 2001!

The effect of blocking between different species occurring in one dimension is investigated here numerically
in the case of particles following branching and annihilating random walk. It is shown that two-dimensional
simulations confirm the field theoretical results with logarithmic corrections. In one dimension, however, if
particles exhibit hard core interaction I confirm the very recent predictions of Kwonet al. @Phys. Rev. Lett.85,
1682 ~2000!# that there are two different universality classes depending on the spatial symmetry of the
offspring production characterized bybS50.5 andbA52. Elaborate analysis of simulation data shows that the
order parameter exponentb does not depend on initial conditions or on diffusion rates of species but strong
correction to scaling is observed. By systematic numerical simulations the critical point properties have been
explored and initial condition dependence of the dynamical exponentsZ and a is shown. In the case of a
random initial state the particle-density decay at the critical point follows thet21/4 law with logarithmic
corrections with two offsprings.

DOI: 10.1103/PhysRevE.63.021113 PACS number~s!: 05.70.Ln, 82.20.Wt
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I. INTRODUCTION

Branching and annihilating random walk~BARW! pro-
cess is one of the simplest prototypes of a particle sys
exhibiting nonequilibrium phase transitions. For a sm
creation/annihilation ratio the system evolves to a comple
empty state from which no return is possible. This so-cal
‘‘absorbing state’’ lacks any fluctuations. For high
creation/annihilation rates, a steady state with some fi
concentration of particles emerges with a phase transit
This phase transition has been investigated first by nume
simulations@1–3# and later with field theoretical method
@4#. In general, we define annihilation ofk particleskA→0
with the rate l and generation ofm offsprings A→(m
11)A with rates.

In d.2 dimensions the phase transition of these syste
can be described by mean-field theory but in low dimensi
the effect of fluctuations introduces more complex behav
The k51,2; m51 case is the so-called directed percolati
process; the continuous phase transition of it defines a ro
universality class. According to the hypothesis of Jans
and Grassberger@5,6# all continuous phase transitions to
single absorbing state in homogeneous systems with sh
ranged interactions belong to this class provided there is
additional symmetry and quenched randomness presen
it was shown by Cardy and Ta¨uber @4# this is the generic
class for all critical models withk51,2; m5 odd and indeed
a large number of model systems@7# have been found to
belong to this class.

If k5m52, the parity of the number of particles is co
served locally under the reactions and another universa
class appears: the so-called parity-conserving or BAR
class. Particles following BARW2 dynamics may also a
pear as kinks between ordered domains in systems exhib
two absorbing states@1,8–11#. For recent reviews se
@12,13#. For k.2 the field theory does not predict any ne
universality classes.

Our knowledge of multiparticle systems is quite incom
plete yet. A very recent paper of Janssen@14# shows that this
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usually leads to asymmetries between pairs of species
unidirectionally coupled systems arise. These systems h
been shown to describe certain surface roughening proce
@15,16#, for example.

The bosonic field theoretical work of@4# predicts a new
universality class for BARW2 process of symmetricN spe-
cies ~N-BARW2!, exhibiting parity conservation (m5k
52) of particles. They found that offspring creations of t
same type likeA→AAA are not relevant processes becau
new particles are annihilated immediately. In the case
branching processes likeA→ABB and A→BBA, all N.1
component models have the same Feynman diagrams as
of the N→` model and the critical point ford<2 happens
to be ats50 zero branching rate with the following critica
exponents:

n i52/d, n'51/d, Z52, a5d/2, b51. ~1!

The critical exponents are defined by the usual way. T
singular behavior of the spatial and temporal correlat
lengths are characterized by

j}s2n', ~2!

t}s2n i. ~3!

The anisotropy or dynamical exponent isZ5n i /n' , while
the particle density near the critical point obeys the scal
law

r~ t,s!}t2af~ tsn i!, ~4!

such that in thet→` steady state limit the order paramet
scales asr}sb; hence

b5an i5aZn' ~5!

scaling relation holds. At the critical dimension (dc52),
logarithmic corrections to density decay are expected.
d.2 the critical point is also ats50 but governed by mean
field exponents@4#.
©2001 The American Physical Society13-1
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In this work I investigated, numerically, the critical be
havior of the 2-BARW2 model in one and two dimensio
with the motivation that the existing field theories
reaction-diffusion models deal with a coarse grain
bosonic description of the particle system and therefore
ticle exclusion has not been taken into account. In a rec
paper @17# we have shown that in the case of on
dimensional~1D! annihilating random walk of two species
the blocking between different species can cause marg
perturbations. Therefore it is an open question whether
can also be observed if we add particle creation to this p
cess.

In a more recent paper Kwonet al. @18# argue based on
local mean-field approximation that in this case new univ
sality classes emerge indeed. I confirm the predictions
Kwon et al. @18# for the order parameter exponent by prec
numerical simulations and show that this exponent does
depend on initial conditions or diffusion ratios of specie
Furthermore, I investigate the very nontrivial time depe
dence of this model and show numerical evidence for
initial-condition dependence of the dynamical exponents
logarithmic corrections.

II. DEFINITION OF THE MODEL

The following random sequential processes have b
implemented ind51 andd52 dimensional lattices posses
ing periodic boundary conditions.

~i! A particle is selected randomly.
~ii ! A nearest neighbor site is selected randomly.
~iii ! With probability 12s the particle is attempted to

move to the new site if that is empty.
~iv! If the new site is filled with the same kind of particle

both of them are removed.
~v! With probability s two offsprings of different types

from the ancestor are placed at two free nearest neigh
sites selected randomly.

In this way I investigate the same model as@18#. The field
theoretical model of@4# also deals with the same partic
reactions albeit without exclusion.

III. SIMULATIONS FROM RANDOM INITIAL STATE
IN TWO DIMENSIONS

The initial conditions for systems with linear sizesL have
been set up in such a way thatL2/2 randomly selectedA or B
particles are placed at random sites.

A. Zero branching rate case„sÄ0…

First the field theoretical expectations@19,4# for the den-
sity decay@r} ln(t)/t# were tested. To see the logarithm
corrections, I plottedr(t)3t versus ln(t). As Fig. 1 shows,
the curves corresponding to different sizes show linear
havior for short times. Later the effect of finite system siz
causes this behavior to break down. The crossover hap
for larger and larger times asL goes to`.
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For the largest system investigated here (L5512) a loga-
rithmic fitting was applied in the 10,t,104 region resulting
in

r~ t !5@0.442~2!10.296~1!ln~ t !#/t. ~6!

Hence the field theoretical predictiona51 with logarithmic
corrections has been confirmed by these simulations.
amplitude of the logarithmic term however differs from th
of the pure annihilation model:A251/8p @19#. One may
speculate that in the two-component system this value is
actly 1/p.

B. Off-critical case „sÌ0…

Traditional, direct simulations of off-critical exponen
usually produce less precise estimates than cluster sim
tions, for example, but now I could eliminate the two mo
important drawbacks of this method. The critical point
known to be exactly ats50; therefore this does not caus
uncertainty in the estimation of the order parameter ex
nent. Furthermore, I use precise analysis of the data by
culating local slopes that enables us to follow corrections
scaling.

The simulations with branching were performed in sy
tems of linear sizes:L5512 in the neighborhood of the criti
cal point (sc50) at s50.0075,0.01,. . . ,0.17 ~Fig. 2!.
About 100 samples were run from independent random
tial states and averaged over for eachs.

From the results at the critical point~Fig. 1! one can see
that this system size is large enough for finite size corr
tions to be negligible fort,104 MCS investigated here. Tha
means we can assume that in my steady state simulation
correlation length does not exceedL. The particle density
curves were averaged following saturation and the effec
be f f(s) exponents were calculated as

FIG. 1. Density decay of the total particle number for differe
system sizes:L516,32,64,128,512~from top to bottom!. Through-
out the papert is measured in units of Monte Carlo sweeps~MCS!
of the lattices.
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be f f~s!5
ln r i2 ln r i 21

ln s i2 ln s i 21
, ~7!

providing an estimate for the true asymptotic behavior of
order parameter

b5 lim
s→0

be f f~s!. ~8!

By applying a linear extrapolation as in Fig. 3, a very go
agreement with the field theoretical prediction for the ord
parameter exponentb51.003(3) can be found.

IV. SIMULATIONS IN ONE DIMENSION

A. The zero branching rate case„sÄ0…

In @17# we showed that in the case of special initial co
ditions

. . . . A . .A . . . B.B . . .B . . B.A . . . . . A . . . . . .B . . B . . .

that assures that the time evolution never freezes~i.e., every
particle has a neighboring particle of the same type to a
hilate with!, the density decays nonuniversally in an initia
condition-dependent way. In this case particles can be
garded as boundaries of compact domains of differ
species that cannot overlap each other. This happens in
generalized Domany-Kinzel cellular automaton, for exam
@20#.

The decay depends on the initial density~and hence on
the initial interparticle separation length! of the species. We
argued on the basis of symmetry considerations and by u
an analogy to the works of Kaiser and Turban@21# that this
decay follows the power law with continuously changi
exponents. We also showed that in the case of asymm
initial conditions, where a small seed ofB particles is in-
serted in the seed ofA’s, the cluster-survival probability o
B’s ~characterized by the exponentd) depends continuously

FIG. 2. Density decay of the total particle number fors
50.0075,0.01,. . . ,0.17 ~from bottom to top! in a system of size
L5512.
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on the initial density ofA’s similar to the case of the pair
contact process@26#. Therefore in this work I investigated
whether the static exponents show any initial-condition
pendence as well and the form of the scaling law that c
nects them to the dynamic ones.

In the case of random initial conditions, particles seg
gate into coarsening mosaic of alternating domains cont
ing alternating sequences ofA’s and B’s. By mapping this
onto diffusion-controlled two-species annihilation (A1B
→0) @22#, Krapivsky and Redner argue that the particle de
sity decays ast21/4 @23#.

I tested this by simulating the process onL5105 lattices
up to t543106 MCS. The local-slopes curves of the dens
decay defined as

ae f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~9!

~where usually I usem58) converge to;0.25 indeed~Fig.
4!, but again like in@17# dependence on the initial condition
can be observed. Now, however, the local slopes do not s
rate in thet→` limit as in the case of ‘‘pairwise’’ initial
conditions@17# but show logarithmically decreasing beha
ior as t→`. This is not an artifact of the finite system size
since the same behavior can be seen on much smalleL
5104) lattices too. The origin of the logarithmic correctio
to scaling is not clear, but it is likely that marginal perturb
tion of species on each other causes it. Note that logarith
correction to time dependence of the interparticle distan
in case of theA1B→0 model have also been shown b
simulations@24# and explained to be the consequence of d
sity inhomogeneity inside the domains.

This anomalous decay behavior cannot be described
the conventional field theoretical description of a partic
system@4# in d51 that omits site restrictions and predic
a51/2. Also the paper of Kwonet al. @18# based on local
mean-field approximation does not show any initia
condition dependency but predicts simply thea51/2 result.

FIG. 3. Effective order parameter exponent (b) results on sys-
tem sizeL5512.
3-3
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GÉZA ÓDOR PHYSICAL REVIEW E 63 021113
The dynamical exponentZ has been determined throug
the measurement of the characteristic timet(L) at the criti-
cal point. In this study I definet(L) as the time it takes for
some portion of the sample to enter the absorbing state
the case of pairwise initial conditions this portion was 50
but in case of random initial conditions, where the evoluti
is very slow in finite systems, I chose this portion to be 10
in order to get results forL.1000 sizes. We expect th
following finite size scaling ats50:

t~L !}LZ. ~10!

FIG. 5. Ze f f vs 1/L at s50. The square and star symbols co
respond to pairwise initial conditions withrA5rB50.125,0.25, re-
spectively. The circles correspond to random initial conditions w
rA5rB50.0625.

FIG. 4. Effective exponent of the particle decay in the on
dimensional BARW2 with two species. The initial condition is ra
domly distributedA’s and B’s along the system of sizeL5105

sites. The solid line corresponds to initial densitiesrA5rB

50.375, the dashed line torA5rB50.25, the dotted line torA

5rB50.125. The dot-dashed line corresponds toL5104 and rA

5rB50.25, while the long-dashed line corresponds toL5104 and
rA5rB50.125.
02111
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The data points have been determined within theL516
24096 size region and to make precise extrapolation, lo
slopes analysis has been performed. In Fig. 5 I have plo

Ze f f~L !5
ln t i2 ln t i 21

ln Li2 ln Li 21
~11!

as a function of 1/L. As one can see, in the pairwise initia
condition caseZe f f converges toZ51.82(2) as 1/L→0
quite smoothly. However in the random initial condition ca
a huge correction to scaling can be observed andZe f f seems
to extrapolate toZ;4.0(2), which is in accordance with the
t21/4 density decay law.

The Z51.82(2) value is in agreement with our previou
finding @17# where we showed that in the case of pairwi
initial conditions the density decays as;t20.545(10). We ar-
gued there that the interparticle distance ofAA andBB pairs
l AA5 l BB}r(t)21 increases with the same power law as t
region of confinement that can be characterized with the
ponent 1/Z. Now I could not obtain significant initial-
condition dependence inZ owing to the lack of such high
precision simulations that we achieved in@17#. Note that the
usual scaling relation between the single-cluster-spread
exponentz @describing the mean distance from the orig
R(t)}tz/2] and the dynamical exponentZ52/z is violated.
This may be understood if we realize that in the seed gro
ing process there is no symmetric, mutual exclusion betw
different species; therefore the exponentz cannot describe
the multisurface effect that arises in the case of pairw
initial conditions. Neither of theseZ values is in agreemen
with the assumptions of@18# and the field theoretical result
for a 1D system without particle exclusion@4#.

B. The off-critical case „sÌ0… with symmetric „static…
branching

The effect of the spatial symmetry in simple on
dimensional BARW processes was first investigated in@25#

FIG. 6. Effective order parameter exponent (b) results for the
symmetric branching case. Circles correspond to the equal diffu
case, squares and triangles todA5dB/2 nonequal diffusion rate cas
of species.

-
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CRITICAL BRANCHING-ANNIHILATING RANDOM WALK . . . PHYSICAL REVIEW E 63 021113
and it was shown that reflection-symmetric~static! branching
causes reentrant phase diagrams unlike the asymmetric~dy-
namic! branching process. First with the same special, p
wise initial conditions as in our recent paper@17#, I per-
formed steady state simulations such that offsprings
generated symmetrically on the left and the right sides
parentsA→BAB, B→ABA ~static branching!. Kwon et al.
@18# reported different critical behavior than what was e
pected by applying the results of the bosonic field theory@4#
for this particle system.

Similar to the two-dimensional case, the density dec
was followed carefully and averaging was done within a lo
time period, following the steady state having been built
Figure 6 shows my simulation results of the order param
b in cases of different diffusion rates. As one can see, all
curves show strong~nonmonotonic! correction to scaling in
the neighborhood ofs50 but they all tend to the valueb
50.5. The overshooting of the effective exponent sign
possible logarithmic correction to scaling. The relaxati
times to steady state weret,105 MCS in these simulations

I found that in the neighborhood of the critical point th
steady state concentration is unchanged if I use larger la
sizes (L543105 instead of 105), therefore the strange
shape of the curves cannot be an artifact of the finite sys
size of the simulations. Note, that had we done a sim
fitting onto the data points we could have estimatedb
;0.55 instead ofb50.5.

The results are plotted as functions ofs0.5 determined
experimentally such that the curves approachs50 in an
asymptotically straight line manner. This means that
leading correction to the scaling exponent is;0.5. As one
can see, the curves converge tob50.50(1) in agreemen
with the predictions of@18#. The simulations with other ini-
tial densities and random initial distributions of particles
sulted in the same steady state values and henceb is un-
changed.

FIG. 7. Data collapse for off-critical simulations of the symme
ric branching model according to the scaling form~4! with a r

51/4 andn i
r52. The different curves correspond tos50.0005,

0.001, 0.002, 0.005, and random initial conditions.
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Comparing theZ’s of the previous section with then'

51/2 of @18# determined by static finite size scaling for th
symmetric branching model, we predict for pairwise initi
conditions,n i

p5Zn'50.915(2) andn i
r52.0(1) for random

initial conditions.
The scaling law of density is fulfilled within error limits

ap.0.545.b/n i
p50.5/0.915 for the pairwise initial case

a r.0.25.b/n i
r50.5/2 for random initial conditions.

The scaling form~4! can be checked by plottingrta

againsttsn i. As Fig. 7 shows, one can obtain a fairly goo
data collapse withn i

r52 and a r50.25 ~corresponding to
random initial conditions! for large times. For small times
the collapse is less good owing to the effect of logarithm
corrections toa r .

For pairwise initial conditions a very good data collap
can be achieved with the standard scaling form~4! using
ap50.545,n i

p50.915.

C. The off-critical case „sÌ0… with asymmetric „dynamical…
branching

For the same special, pairwise initial conditions as in o
recent paper@17# I performed steady state simulations su
that offsprings were generated on the left or right sides
parentsA→ABB, A→BBA, B→BAA, andB→AAB. The
relaxation time in this case was very long, typicallyt.106

MCS that prohibited getting closer to the critical point th
s50.03. I performed these simulations in system sizes
L5105 sites and averaged over 100 samples.

As one can see in Fig. 8 thebe f f extrapolates to 2.05(10
linearly in agreement with what was deduced from the lo
mean-field approximation by Kwonet al. @18#. This value,
however, differs from the field theoretical predictions (b
51) @4# obtained for the coarse grained, bosonic descript
of the particle system, which neglects hard-core interactio

I investigated the decay by starting from other differe
initial conditions as well. The steady state concentration a
hence the exponentb was found to be the same, independe

FIG. 8. Effective order parameter exponent (b) results for the
asymmetric branching case.
3-5
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GÉZA ÓDOR PHYSICAL REVIEW E 63 021113
of the initial density of particles. In the case of random init
distribution of particles the relaxation was found to be ev
longer, reflecting the fact that initial alternating sequen
slow down the evolution to the steady state but the fi
concentration was the same. Again by comparing theZ’s of
Sec. IV A withn'52 of @18# determined by static finite-siz
scaling for the asymmetric branching process, we can pre
for pairwise initial conditionsn i

p5Zn'53.66(2) andn i
r

58.0(4) for random initial conditions. As in Sec. IV B th
standard scaling relation of the density is fulfilled for bo
initial cases within error limits:ap.0.545.b/n i

p52/3.66,
a r.0.25.b/n i

r58/2 and the scaling law can be confirme
by data collapse~see Fig. 9!.

In the case of dynamic branching Kwonet al. @18# claim
a slight dependence~a few percent! of the static exponents
on the diffusion rates of different species. The relaxat
time in this case is so huge that it hindered achieving suc
precision by simulations.

D. The off-critical case „sÌ0… without exclusion

Finally I tested the field theoretical results in one dime
sion in such a way that I allowed particles of different typ
to exchange sites upon meeting. The steady state densit
been determined for different values ofs around zero in
lattices withL523104 size. As one can see in Fig. 10, th

FIG. 9. Data collapse for off-critical simulations of the symme
ric branching model according to the scaling form~4! with ap

50.545 and n i
p53.66. The different curves correspond tos

50.03, 0.035, 0.04, 0.05, and pairwise initial conditions.
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middle curve~corresponding to this case! approachess50
linearly indeed, in agreement with theb51 field theoretical
result. This can be verified by consideringbe f f as well.

V. CONCLUSIONS

In this study I confirmed numerically the field theoretic
predictions for the two-dimensional branching and annihil
ing random walk process of two species. The logarithm
corrections to the power law density decay function ha
been determined.

In one dimension I gave numerical evidence that
bosonic renormalization group field theoretical predictio
cannot be applied, in contrast to widespread beliefs for s
tems with exclusion and the fact that order parameter ex
nent depends on the spatial symmetry of the offspring p
duction process. As Fig. 10 shows, the steady state dens
much lower if offsprings are created on the same side of
parent as against the case when they are separated b
parent resulting in different scaling exponentsb52 versus
b51/2.

This particle exclusion effect results in new universal
classes in one dimension as summarized in Table I and
static exponents are insensitive to the initial conditions.
the case of static branching the precise numerical analys

FIG. 10. Steady state density in the one-dimensional 2-BARW
model. Circles correspond to the asymmetric branching withb
52, diamonds to the symmetric branching withb51/2, and stars
to the model without exclusion (b51).
TABLE I. Summary of critical exponents in one dimension. The nonblocking data are quoted from@4#.
The predictions forn' of the blocking models are cited from@18#. Data divided by ‘‘/’’ correspond to random
vs pairwise initial condition cases. Exponents denoted by * exhibit slight initial density dependence@17#.

Process n i n' Z a b

Nonblocking 2 1 2 1/2 1
Symmetric 2.0~1!/0.915~2! 0.50~1! 4.0~2!/1.82~2!* 0.25~1!/0.55~1!* 0.50~1!

Asymmetric 8.0~4!/3.66~2! 2.0~1! 4.0~2!/1.82~2!* 0.25~1!/0.55~1!* 2.05~10!
3-6
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CRITICAL BRANCHING-ANNIHILATING RANDOM WALK . . . PHYSICAL REVIEW E 63 021113
the order parameter data does not show dependence o
diffusion ratios either.

The density decay exponent starting from a random ini
state (a) has been shown to agree with predictions of@23#
but initial density-dependent logarithmic corrections to sc
ing can be observed. The dynamical exponentZ has been
found to depend on the initial conditions too. For pairwi
initial conditions it is in agreement with our earlier stud
@17#. All these results for dynamical scaling deviate fro
those obtained by the continuum field theory and assume
@18#.

This study gives further evidence to the claims of Kw
et al. @18# that in one dimension, a series of new universa
v

02111
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classes emerge in nonequilibrium particle systems exhibi
hard-core interactions and continuous phase transitions.
relative simplicity of this model and the precision of th
critical exponents obtained may provide a good starting po
to more elaborate analytical investigations of systems w
hard-core exclusion.
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