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Critical branching-annihilating random walk of two species

Géeza Qdor
Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49, Hungary
(Received 19 September 2000; published 26 January)2001

The effect of blocking between different species occurring in one dimension is investigated here numerically
in the case of particles following branching and annihilating random walk. It is shown that two-dimensional
simulations confirm the field theoretical results with logarithmic corrections. In one dimension, however, if
particles exhibit hard core interaction | confirm the very recent predictions of Katah [Phys. Rev. Lett85,

1682 (2000] that there are two different universality classes depending on the spatial symmetry of the
offspring production characterized = 0.5 andB,=2. Elaborate analysis of simulation data shows that the
order parameter exponeptdoes not depend on initial conditions or on diffusion rates of species but strong
correction to scaling is observed. By systematic numerical simulations the critical point properties have been
explored and initial condition dependence of the dynamical expongiisd « is shown. In the case of a
random initial state the particle-density decay at the critical point followsttH& law with logarithmic
corrections with two offsprings.
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[. INTRODUCTION usually leads to asymmetries between pairs of species and
unidirectionally coupled systems arise. These systems have
Branching and annihilating random wa(BARW) pro-  been shown to describe certain surface roughening processes
cess is one of the simplest prototypes of a particle systerfil5,16, for example.
exhibiting nonequilibrium phase transitions. For a small The bosonic field theoretical work ¢#] predicts a new
creation/annihilation ratio the system evolves to a completelyniversality class for BARW2 process of symmetNcspe-
empty state from which no return is possible. This so-calleccies (N-BARW?2), exhibiting parity conservation nf=k
“absorbing state” lacks any fluctuations. For higher =2) of particles. They found that offspring creations of the
creation/annihilation rates, a steady state with some finitsame type likeA— AAA are not relevant processes because
concentration of particles emerges with a phase transitiomew particles are annihilated immediately. In the case of
This phase transition has been investigated first by numericddranching processes likk—ABB and A—BBA, all N>1
simulations[1-3] and later with field theoretical methods component models have the same Feynman diagrams as that
[4]. In general, we define annihilation &fparticleskA—0 of the N—oo model and the critical point fod<2 happens
with the rate X and generation ofm offsprings A—(m  to be ate=0 zero branching rate with the following critical
+1)A with rate o. exponents:
In d>2 dimensions the phase transition of these systems
can be described by mean-field theory but in low dimensions w=2d, v,=1Md, Z=2, a=d2, p=1. (1)
the effect of fluctuations introduces more complex behavior
Thek=1,2; m=1 case is the so-called directed percolation
process; the continuous phase transition of it defines a robu
universality class. According to the hypothesis of Janssen

The critical exponents are defined by the usual way. The
singular behavior of the spatial and temporal correlation
ngths are characterized by

and Grassbergdi5,6] all continuous phase transitions to a focg L, 2)
single absorbing state in homogeneous systems with short-
ranged interactions belong to this class provided there is no Focg Y, 3

additional symmetry and quenched randomness present. As

it was shown by Cardy and Taer[4] this is the generic The anisotropy or dynamical exponentds=v,/v, , while
class for all critical models witk=1,2: m= odd and indeed the particle density near the critical point obeys the scaling
a large number of model systerig] have been found to law

belong to this class. o )

If k=m=2, the parity of the number of particles is con- p(t,o)xt“p(ta™), 4
served locally under the reactions and another universalit
class appears: the so-called parity-conserving or BARW.
class. Particles following BARW2 dynamics may also ap-
pear as kink_s between ordered domains in systems exhibiting B=av=aZv, (5)
two absorbing state§1,8—11. For recent reviews see
[12,13. For k>2 the field theory does not predict any new scaling relation holds. At the critical dimensioml & 2),
universality classes. logarithmic corrections to density decay are expected. For

Our knowledge of multiparticle systems is quite incom-d>2 the critical point is also at=0 but governed by mean-
plete yet. A very recent paper of Jans$&d] shows that this  field exponent$4].

uch that in the— o steady state limit the order parameter
cales ap>o”; hence
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In this work | investigated, numerically, the critical be- 4 .
havior of the 2-BARW2 model in one and two dimensions
with the motivation that the existing field theories of
reaction-diffusion models deal with a coarse grained,
bosonic description of the particle system and therefore par-
ticle exclusion has not been taken into account. In a recen
paper [17] we have shown that in the case of one- _
dimensional(1D) annihilating random walk of two species, ‘a
the blocking between different species can cause margina
perturbations. Therefore it is an open question whether this
can also be observed if we add particle creation to this pro-
cess.

In a more recent paper Kwoet al. [18] argue based on
local mean-field approximation that in this case new univer-
sality classes emerge indeed. | confirm the pred|ct|ons_, of ; 0 00 oo 1oe00 100000
Kwon et al.[18] for the order parameter exponent by precise t (MCS)
numerical simulations and show that this exponent does not
depend on initial conditions or diffusion ratios of species. FIG. 1. Density decay of the total particle number for different
Furthermore, | investigate the very nontrivial time depen-system sizest =16,32,64,128,512from top to bottom. Through-
dence of this model and show numerical evidence for theut the papet is measured in units of Monte Carlo swedMCS)
initial-condition dependence of the dynamical exponents an@f the lattices.
logarithmic corrections.

o

For the largest system investigated hdre=(612) a loga-

Il. DEFINITION OF THE MODEL rithmic fitting was applied in the $0t<10* region resulting
in
The following random sequential processes have been
implemented ird=1 andd=2 dimensional lattices possess- p(1)=[0.4422)+0.2961)In(t)]/t. (6)
ing periodic boundary conditions.
(i) A particle is selected randomly. Hence the field theoretical predictiar= 1 with logarithmic
(i) A nearest neighbor site is selected randomly. corrections has been confirmed by these simulations. The
(i) With probability 1— ¢ the particle is attempted to amplitude of the logarithmic term however differs from that
move to the new site if that is empty. of the pure annihilation modelA,=1/87 [19]. One may
(iv) If the new site is filled with the same kind of particle, SPeculate that in the two-component system this value is ex-
both of them are removed. actly 1/r.

(v) With probability o two offsprings of different types
from the ancestor are placed at two free nearest neighbor »
sites selected randomly. B. Off-critical case (o>0)

Traditional, direct simulations of off-critical exponents

In this way | investigate the same model[a8]. The field usually produce less precise estimates than cluster simula-
theoretical model of4] also deals with the same particle tions, for example, but now | could eliminate the two most
reactions albeit without exclusion. important drawbacks of this method. The critical point is
known to be exactly atr=0; therefore this does not cause
uncertainty in the estimation of the order parameter expo-
nent. Furthermore, | use precise analysis of the data by cal-
culating local slopes that enables us to follow corrections to

The initial conditions for systems with linear sizehave  scaling.
been set up in such a way tHa#/2 randomly selected or B The simulations with branching were performed in sys-
particles are placed at random sites. tems of linear sized: =512 in the neighborhood of the criti-

cal point (c.=0) at 0=0.0075,0.01,..,0.17 (Fig. 2.
About 100 samples were run from independent random ini-
tial states and averaged over for each

First the field theoretical expectatiofis9,4] for the den- From the results at the critical poiffig. 1) one can see
sity decay[ p In(t)/t] were tested. To see the logarithmic that this system size is large enough for finite size correc-
corrections, | plottegp(t) Xt versus Inf). As Fig. 1 shows, tions to be negligible fot<10* MCS investigated here. That
the curves corresponding to different sizes show linear bemeans we can assume that in my steady state simulations the
havior for short times. Later the effect of finite system sizescorrelation length does not exceéd The particle density
causes this behavior to break down. The crossover happegsrves were averaged following saturation and the effective
for larger and larger times dsgoes tox. Beii(0) exponents were calculated as

Ill. SIMULATIONS FROM RANDOM INITIAL STATE
IN TWO DIMENSIONS

A. Zero branching rate case(o=0)
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FIG. 3. Effective order parameter exponef®) (results on sys-

FIG. 2. Density decay of the total particle number for tem sizel =512,

=0.0075,0.01, ..,0.17 (from bottom to top in a system of size

L=512.
on the initial density ofA’s similar to the case of the pair-

o — N o contact proces§26]. Therefore in this work | investigated
M, (7)  whether the static exponents show any initial-condition de-
Inoi—Inoj_; pendence as well and the form of the scaling law that con-
- . . . nects them to the dynamic ones.
providing an estimate for the true asymptotic behavior of the In the case of random initial conditions, particles segre-
order parameter gate into coarsening mosaic of alternating domains contain-

_ i ing alternating sequences #fs and B’s. By mapping this

p ,l,lino Beir(0)- ® onto diffusion-controlled two-species annihilatiorA<{ B
—0) [22], Krapivsky and Redner argue that the particle den-

By applying a linear extrapolation as in Fig. 3, a very goodsity decays as~ ¥ [23].
agreement with the field theoretical prediction for the order | tested this by simulating the process s 10° lattices
parameter exponerg@=1.003(3) can be found. up tot=4x10° MCS. The local-slopes curves of the density
decay defined as

Beti(0) =

IV. SIMULATIONS IN ONE DIMENSION

— In[p(t)/p(t/m
A. The zero branching rate case(o=0) aei(t) = [F)I;()m’))( )] 9
In [17] we showed that in the case of special initial con-
ditions (where usually | usen=28) converge to~0.25 indeedFig.
A A _BB.B.BA. A B B.. 4), but again like if17] dependence on the initial conditions

can be observed. Now, however, the local slopes do not satu-
that assures that the time evolution never fredzes every rate in thet—o limit as in the case of “pairwise” initial
particle has a neighboring particle of the same type to annieonditions[17] but show logarithmically decreasing behav-
hilate with), the density decays nonuniversally in an initial- ior ast—oc. This is not an artifact of the finite system sizes
condition-dependent way. In this case particles can be resince the same behavior can be seen on much smaller (
garded as boundaries of compact domains of different=10% lattices too. The origin of the logarithmic correction
species that cannot overlap each other. This happens in the scaling is not clear, but it is likely that marginal perturba-
generalized Domany-Kinzel cellular automaton, for exampleion of species on each other causes it. Note that logarithmic
[20]. correction to time dependence of the interparticle distances

The decay depends on the initial dendignd hence on in case of theA+B—0 model have also been shown by

the initial interparticle separation lengtbf the species. We simulationg 24] and explained to be the consequence of den-
argued on the basis of symmetry considerations and by usirgjity inhomogeneity inside the domains.
an analogy to the works of Kaiser and Tur&1i] that this This anomalous decay behavior cannot be described by
decay follows the power law with continuously changingthe conventional field theoretical description of a particle
exponents. We also showed that in the case of asymmetrgystem[4] in d=1 that omits site restrictions and predicts
initial conditions, where a small seed Bf particles is in- a=1/2. Also the paper of Kwort al. [18] based on local
serted in the seed dX’s, the cluster-survival probability of mean-field approximation does not show any initial-
B’s (characterized by the exponefit depends continuously condition dependency but predicts simply the 1/2 result.
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FIG. 4. Effective exponent of the particle decay in the one-

dimensional BARW?2 with two species. The initial condition is ran-
domly distributedA’s and B’s along the system of size=10
sites. The solid line corresponds to initial densitipg=pg
=0.375, the dashed line top=pg=0.25, the dotted line tp,
=pg=0.125. The dot-dashed line correspondd_te10* and p,
=pg=0.25, while the long-dashed line corresponds to10* and
pa=pp=0.125.

The dynamical exponer? has been determined through
the measurement of the characteristic tinfe) at the criti-
cal point. In this study | define(L) as the time it takes for

some portion of the sample to enter the absorbing state. |
the case of pairwise initial conditions this portion was 50%
but in case of random initial conditions, where the evolution

is very slow in finite systems, | chose this portion to be 10%,

in order to get results foL.>1000 sizes. We expect the
following finite size scaling at-=0:
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FIG. 5. Z¢¢s vs 1L at 0=0. The square and star symbols cor-
respond to pairwise initial conditions wifhp= pg=0.125,0.25, re-

spectively. The circles correspond to random initial conditions with
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FIG. 6. Effective order parameter exponeg) (results for the
symmetric branching case. Circles correspond to the equal diffusion
case, squares and trianglesdio= dg/2 nonequal diffusion rate case
of species.

The data points have been determined within the 16
— 4096 size region and to make precise extrapolation, local-
slopes analysis has been performed. In Fig. 5 | have plotted

In T — In Ti—1

Zet(L)= {5 Li—InL_,

(11)

as a function of 1/. As one can see, in the pairwise initial-
Bondition caseZq¢; converges toZ=1.82(2) as 1/ —0
quite smoothly. However in the random initial condition case
a huge correction to scaling can be observed a5¢dseems

to extrapolate t&~4.0(2), which is in accordance with the
t~ Y density decay law.

The Zz=1.82(2) value is in agreement with our previous
finding [17] where we showed that in the case of pairwise
initial conditions the density decays ast~ %540 we ar-
gued there that the interparticle distanceA® andBB pairs
Ian=lgg=p(t) ! increases with the same power law as the
region of confinement that can be characterized with the ex-
ponent 1Z. Now | could not obtain significant initial-
condition dependence id owing to the lack of such high
precision simulations that we achieved[itv]. Note that the
usual scaling relation between the single-cluster-spreading
exponentz [describing the mean distance from the origin
R(t)=t??] and the dynamical expone@®@=2/z is violated.
This may be understood if we realize that in the seed grow-
ing process there is no symmetric, mutual exclusion between
different species; therefore the exponentannot describe
the multisurface effect that arises in the case of pairwise
initial conditions. Neither of thesg values is in agreement
with the assumptions dfL8] and the field theoretical results
for a 1D system without particle exclusidd].

B. The off-critical case (¢>0) with symmetric (static)
branching

The effect of the spatial symmetry in simple one-
dimensional BARW processes was first investigate i
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FIG. 7. Data collapse for off-critical simulations of the symmet-  FIG. 8. Effective order parameter exponeg) (results for the
ric branching model according to the scaling fo# with o'  asymmetric branching case.
=1/4 and vﬁ:Z. The different curves correspond to=0.0005,

0.001, 0.002, 0.005, and random initial conditions. Comparing theZ's of the previous section with the,

=1/2 of [18] determined by static finite size scaling for the
and it was shown that reflection-symmefstatio branching  symmetric branching model, we predict for pairwise initial
causes reentrant phase diagrams unlike the asymnteyic  conditions,»f=Zv, =0.915(2) andv|=2.0(1) for random
namig branching process. First with the same special, pairinitial conditions.
wise initial conditions as in our recent papi7], | per- The scaling law of density is fulfilled within error limits;
formed steady state simulations such that offsprings argP=0.545=3/vP=0.5/0.915 for the pairwise initial case,
generated symmetrically on the left and the right sides Ofa’:O.ZSzﬁlvﬁ=O.5/2 for random initial conditions.
parentsA—BAB, B— ABA (static branching Kwon et al. The scaling form(4) can be checked by plottingt®
[18] reported different critical behavior than what was ex-5gainsttoi. As Fig. 7 shows, one can obtain a fairly good
pected by applying the results of the bosonic field thddly ;i collapse withv|=2 and a'=0.25 (corresponding to

for this particle system. random initial conditionsfor large times. For small times

Similar to the two-dimensional case, the density deca3fhe collapse is less good owing to the effect of logarithmic

was followed carefully and averaging was done within a Iongcorrections toa'.

time period, following the steady state having been built up. For pairwise initial conditions a very good data collapse

Figure 6 shows my simulation results of the order parameteg : : ; :
; . e an be achieved with the standard scaling fden usin
B in cases of different diffusion rates. As one can see, all the , g fa g

. ) T aP=0.545, vﬁ20.915.

curves show stronghonmonotonig correction to scaling in
the neighborhood o&r=0 but they all tend to the valug
=0.5. The overshooting of the effective exponent signals
possible logarithmic correction to scaling. The relaxation
times to steady state wetec10° MCS in these simulations. For the same special, pairwise initial conditions as in our

| found that in the neighborhood of the critical point the recent papef17] | performed steady state simulations such
steady state concentration is unchanged if | use larger latticénat offsprings were generated on the left or right sides of
sizes (=4x10 instead of 1), therefore the strange parentsA—ABB, A—BBA B—BAA, andB—AAB. The
shape of the curves cannot be an artifact of the finite systemelaxation time in this case was very long, typicatly 10°
size of the simulations. Note, that had we done a simplCS that prohibited getting closer to the critical point than
fitting onto the data points we could have estimai@d ¢=0.03. | performed these simulations in system sizes of
~0.55 instead of3=0.5. L =10 sites and averaged over 100 samples.

The results are plotted as functions @f° determined As one can see in Fig. 8 the,¢; extrapolates to 2.05(10)
experimentally such that the curves approackO in an linearly in agreement with what was deduced from the local
asymptotically straight line manner. This means that themean-field approximation by Kwoet al. [18]. This value,
leading correction to the scaling exponent+9.5. As one however, differs from the field theoretical predictiong (
can see, the curves converge e=0.50(1) in agreement =1) [4] obtained for the coarse grained, bosonic description
with the predictions of18]. The simulations with other ini- of the particle system, which neglects hard-core interactions.

C. The off-critical case (>0) with asymmetric (dynamical)
branching

tial densities and random initial distributions of particles re- | investigated the decay by starting from other different
sulted in the same steady state values and hghée un- initial conditions as well. The steady state concentration and
changed. hence the exponerit was found to be the same, independent
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FIG. 9. Data collapse for off-critical simulations of the symmet-  F|G. 10. Steady state density in the one-dimensional 2-BARW-2
ric branching model according to the scaling fol# with a”  model. Circles correspond to the asymmetric branching vith

=0.545 and »f=3.66. The different curves correspond to =2, diamonds to the symmetric branching wji=1/2, and stars
=0.03, 0.035, 0.04, 0.05, and pairwise initial conditions. to the model without exclusiong=1).

of the initial density of particles. In the case of random initial ;i y41e curve(corresponding to this casepproachesr=0

longer, reflecting the fact that initial alternating sequencer]mearly indeed, in agreement with ti=1 field theoretical
slow down the evolution to the steady state but the fina esult. This can be verified by considerifigy; as well

concentration was the same. Again by comparingztseof
Sec. IV A with v, =2 of [18] determined by static finite-size
scaling for the asymmetric branching process, we can predict | thjs study | confirmed numerically the field theoretical
for pairwise initial conditionsyf=Zv, =3.66(2) andv|  predictions for the two-dimensional branching and annihilat-
=8.0(4) for random initial conditions. As in Sec. IV B the ing random walk process of two species. The logarithmic
standard scaling relation of the density is fulfilled for both . rections to the power law density decay function have
initial cases within error limitsa®=0.545=B/vf=2/3.66,  peen determined.
a'=0.25=p/v|=8/2 and the scaling law can be confirmed |5 one dimension | gave numerical evidence that the
by data collapsesee Fig. 9. _ _ bosonic renormalization group field theoretical predictions
In the case of dynamic branching Kwen al.[18] claim  cannot be applied, in contrast to widespread beliefs for sys-
a slight qependenc@ few p.ercel’)t of the.statlc exponents tems with exclusion and the fact that order parameter expo-
on the d|_ffu3|on rates of dlffere_nt Species. Th_e r_elaxatlonhem depends on the spatial symmetry of the offspring pro-
time In this case Is so huge that it hindered achieving such Buction process. As Fig. 10 shows, the steady state density is
precision by simulations. much lower if offsprings are created on the same side of the
parent as against the case when they are separated by the
parent resulting in different scaling exponeyis-2 versus
Finally | tested the field theoretical results in one dimen-g=1/2.
sion in such a way that | allowed particles of different types This particle exclusion effect results in new universality
to exchange sites upon meeting. The steady state density helasses in one dimension as summarized in Table | and the
been determined for different values of around zero in static exponents are insensitive to the initial conditions. In
lattices withL =2 10* size. As one can see in Fig. 10, the the case of static branching the precise numerical analysis of

V. CONCLUSIONS

D. The off-critical case (>0) without exclusion

TABLE I. Summary of critical exponents in one dimension. The nonblocking data are quoted4tom
The predictions fow, of the blocking models are cited frof8]. Data divided by “/”” correspond to random
vs pairwise initial condition cases. Exponents denoted by * exhibit slight initial density deperidétce

Process Iz v, 4 a B
Nonblocking 2 1 2 1/2 1
Symmetric 2.01)/0.9152) 0.501) 4.012)/1.822)* 0.25(1)/0.551)* 0.50(1)
Asymmetric 8.04)/3.662) 2.001) 4.0(2)/1.822)* 0.25(1)/0.551)* 2.05(10)
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the order parameter data does not show dependence on tblasses emerge in nonequilibrium particle systems exhibiting

diffusion ratios either.

hard-core interactions and continuous phase transitions. The

The density decay exponent starting from a random initiarelative simplicity of this model and the precision of the

state ) has been shown to agree with predictiond 23]

critical exponents obtained may provide a good starting point

but initial density-dependent logarithmic corrections to scalto more elaborate analytical investigations of systems with

ing can be observed. The dynamical expongrtas been

found to depend on the initial conditions too. For pairwise

initial conditions it is in agreement with our earlier study

[17]. All these results for dynamical scaling deviate from

hard-core exclusion.
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